Tuning of Kalman Filter Parameters via Genetic Algorithm for State-of-Charge Estimation in Battery Management System
نویسندگان
چکیده
In this work, a state-space battery model is derived mathematically to estimate the state-of-charge (SoC) of a battery system. Subsequently, Kalman filter (KF) is applied to predict the dynamical behavior of the battery model. Results show an accurate prediction as the accumulated error, in terms of root-mean-square (RMS), is a very small value. From this work, it is found that different sets of Q and R values (KF's parameters) can be applied for better performance and hence lower RMS error. This is the motivation for the application of a metaheuristic algorithm. Hence, the result is further improved by applying a genetic algorithm (GA) to tune Q and R parameters of the KF. In an online application, a GA can be applied to obtain the optimal parameters of the KF before its application to a real plant (system). This simply means that the instantaneous response of the KF is not affected by the time consuming GA as this approach is applied only once to obtain the optimal parameters. The relevant workable MATLAB source codes are given in the appendix to ease future work and analysis in this area.
منابع مشابه
Tuning of Extended Kalman Filter using Self-adaptive Differential Evolution Algorithm for Sensorless Permanent Magnet Synchronous Motor Drive
In this paper, a novel method based on a combination of Extended Kalman Filter (EKF) with Self-adaptive Differential Evolution (SaDE) algorithm to estimate rotor position, speed and machine states for a Permanent Magnet Synchronous Motor (PMSM) is proposed. In the proposed method, as a first step SaDE algorithm is used to tune the noise covariance matrices of state noise and measurement noise i...
متن کاملRotated Unscented Kalman Filter for Two State Nonlinear Systems
In the several past years, Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) havebecame basic algorithm for state-variables and parameters estimation of discrete nonlinear systems.The UKF has consistently outperformed for estimation. Sometimes least estimation error doesn't yieldwith UKF for the most nonlinear systems. In this paper, we use a new approach for a two variablestate no...
متن کاملState-of-Charge Estimation for Li-Ion Power Batteries Based on a Tuning Free Observer
A battery’s state-of-charge (SOC) can be used to estimate the mileage an electric vehicle (EV) can travel. It is desirable to make such an estimation not only accurate, but also economical in computation, so that the battery management system (BMS) can be cost-effective in its implementation. Existing computationally-efficient SOC estimation algorithms, such as the Luenberger observer, suffer f...
متن کاملReal-time estimation of battery state-of-charge with unscented Kalman filter and RTOS ᅫᄐCOS-II platform ¬リニ
To develop an advanced battery estimation unit for electric vehicles application, the state-of-charge (SoC) estimation is proposed with an unscented Kalman filter (UKF) and realized with the RTOS lCOS-II platform. Kalman filters are broadly used to deploy various battery SoC estimators recently. Herein, an UKF algorithm has been employed to develop a systematic adaptive SoC estimation framework...
متن کاملEstimation of State of Charge of Lithium-ion Battery Based on Photovoltaic Generation Energy Storage System
Original scientific paper The fast and accurate estimation of state of charge (SOC) of lithium-ion battery is one of the key technologies of battery management system. In view of this nonlinear dynamic system of lithium battery, through the test and analysis of lithium-ion battery hysteresis characteristics, the second-order RC hysteresis model is established, and the cubature Kalman filter alg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014